Augmented Superfield Approach To Unique Nilpotent Symmetries For Complex Scalar Fields In QED

نویسنده

  • S. N. Bose
چکیده

The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to the U(1) gauge field, in the framework of augmented superfield formalism. This interacting gauge theory (i.e. QED) is considered on a six (4, 2)-dimensional supermanifold parametrized by four even spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizontality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covariant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too. PACS numbers: 11.15.-q; 12.20.-m; 03.70.+k

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented superfield approach to unique nilpotent symmetries for complex scalar fields in QED

The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to ...

متن کامل

Augmented superfield approach to unique nilpotent symmetries for complex scalar fields in QED

The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to ...

متن کامل

A Generalization Of Horizontality Condition In Superfield Approach To Nilpotent Symmetries For QED With Complex Scalar Fields

We provide a generalization of the horizontality condition of the usual superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to obtain the nilpotent (anti-)BRST symmetry transformations for all the fields of a four (3 + 1)-dimensional interacting 1-form U(1) gauge theory (QED) within the framework of the augmented superfield formalism. In the above interacting gauge theory, there i...

متن کامل

A generalization of the horizontality condition in the superfield approach to nilpotent symmetries for QED with complex scalar fields

We provide a generalization of the horizontality condition of the usual superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to obtain the (anti-)BRST symmetry transformations for all the fields of a four (3 + 1)-dimensional interacting 1-form U(1) gauge theory (QED) within the framework of the augmented superfield formalism. In the above interacting gauge theory, there is an expli...

متن کامل

Superfield Approach to Exact and Unique Nilpotent Symmetries

In the framework of usual superfield approach, we derive the exact local, covari-ant, continuous and off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the U(1) gauge field (A µ) and the (anti-)ghost fields ((¯ C)C) of the Lagrangian density of a four (3 + 1)-dimensional QED by exploiting the horizontality condition defined on the six (4, 2)-dimensio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006